Professional Data Science and AI Course
Comprehensive Syllabus
Module No. |
Topic |
Subtopics |
1 |
Foundations of Data Science & AI |
Introduction, Lifecycle, Ecosystem, Tools, Use Cases |
2 |
Programming for Data Science |
Python Basics, OOPs, NumPy, Pandas, Matplotlib, Seaborn |
3 |
Mathematics for Data Science & AI |
Linear Algebra, Calculus, Probability & Statistics |
4 |
Data Handling & Preprocessing |
Cleaning, Missing Data, Feature Engineering, Encoding, Scaling |
5 |
Databases & Data Management |
SQL, NoSQL |
6 |
Exploratory Data Analysis (EDA) |
Univariate/Bivariate Analysis, Correlations, Outliers, Profiling Reports |
7 |
Machine Learning |
Supervised & Unsupervised Learning, Model Evaluation, Tuning, scikit-learn (sk learn) |
8 |
Deep Learning |
Neural Networks, CNN, RNN, LSTM, PyTorch and Keras |
9 |
Natural Language Processing (NLP) |
Tokenization, TF-IDF, Word2Vec, Transformers, BERT, GPT, Text Classification |
11 |
Computer Vision |
Autoencoders, Segmentation and Object Detection |
12 |
Generative AI – I |
VAE, GANs (Vanilla, DCGAN), Diffusion Models, Image Generation (un-conditional and conditional) |
13 |
Generative AI – II |
Understanding and building RAGs and AI agents |
14 |
Data Visualization & BI Tools |
Tableau, Power BI |
15 |
Big Data & Distributed Systems |
Hadoop, PySpark |
16 |
Capstone Project |
Real-World Projects |
